Respuesta :

if that is x^2+y^2=8
then the radius is 2[tex] \sqrt{2} [/tex]

Answer:

The radius of the circle whose equation is [tex]x^{2}+y^{2}=8[/tex] is [tex]2\sqrt{2}[/tex]

Step-by-step explanation:

The equation of a circle centered at the origin [tex](0,0)[/tex] and radius [tex]R[/tex] is :

[tex]x^{2}+y^{2}=R^{2}[/tex] (I)

Where ''[tex]R[/tex]'' is a real number.

For the equation given, we know that

[tex]R^{2}=8[/tex] ⇒

[tex]R=\sqrt{8}[/tex]

[tex]R=\sqrt{(2).(4)}[/tex]

[tex]R=2\sqrt{2}[/tex]

We found out that the radius of the circle is [tex]R=2\sqrt{2}[/tex]

For another circle, for example centered at the point [tex](a,b)[/tex] and radius [tex]R[/tex] the equation is :

[tex](x-a)^{2}+(y-b)^{2}=R^{2}[/tex]  (II)

Notice that if we replace the point [tex](a,b)[/tex] by [tex](0,0)[/tex] ⇒

[tex](x-0)^{2}+(y-0)^{2}=R^{2}[/tex] ⇒

[tex]x^{2}+y^{2}=R^{2}[/tex]

We obtain the equation (I).