Respuesta :
Answer:
The radius of the circle whose equation is [tex]x^{2}+y^{2}=8[/tex] is [tex]2\sqrt{2}[/tex]
Step-by-step explanation:
The equation of a circle centered at the origin [tex](0,0)[/tex] and radius [tex]R[/tex] is :
[tex]x^{2}+y^{2}=R^{2}[/tex] (I)
Where ''[tex]R[/tex]'' is a real number.
For the equation given, we know that
[tex]R^{2}=8[/tex] ⇒
[tex]R=\sqrt{8}[/tex]
[tex]R=\sqrt{(2).(4)}[/tex]
[tex]R=2\sqrt{2}[/tex]
We found out that the radius of the circle is [tex]R=2\sqrt{2}[/tex]
For another circle, for example centered at the point [tex](a,b)[/tex] and radius [tex]R[/tex] the equation is :
[tex](x-a)^{2}+(y-b)^{2}=R^{2}[/tex] (II)
Notice that if we replace the point [tex](a,b)[/tex] by [tex](0,0)[/tex] ⇒
[tex](x-0)^{2}+(y-0)^{2}=R^{2}[/tex] ⇒
[tex]x^{2}+y^{2}=R^{2}[/tex]
We obtain the equation (I).