Respuesta :

jbmow
D is the answer.
If f(x) or y = 2x, the inverse is x = 2y or y=x/2 which is not f(x).

Answer:

[tex]f(x)= 2x[/tex]

Step-by-step explanation:

For which function is f(x) not equal to f^-1(x)

LEts check with each function, we find out inverse for each option

[tex]f(x)= 2-x[/tex]

Replace f(x) by y, then switch the variables and solve for y

[tex]y= 2-x[/tex]

[tex]x= 2-y[/tex], Add y on both sides

[tex]x+y= 2[/tex], Subtract x from both sides

[tex]y= 2-x[/tex], Inverse is equal to f(x)

[tex]-f(x)= \frac{2}{x}[/tex]

Replace f(x) by y, then switch the variables and solve for y

[tex]-y= \frac{2}{x}[/tex]

[tex]-x= \frac{2}{y}[/tex],  cross multiply it

[tex]-xy = 2[/tex], divide by x on both sides

[tex]-y= \frac{2}{x}[/tex], Inverse is equal to f(x)

[tex]f(x)= -x[/tex]

Replace f(x) by y, then switch the variables and solve for y

[tex]y= -x[/tex]

[tex]x=-y[/tex], Add y on both sides

[tex]x+y= 0[/tex], Subtract x from both sides

[tex]y=-x[/tex], Inverse is equal to f(x)

[tex]f(x)= 2x[/tex]

Replace f(x) by y, then switch the variables and solve for y

[tex]y= 2x[/tex]

[tex]x= 2y[/tex], divide by 2 on both sides

[tex]\frac{x}{2}=y[/tex],  Inverse is not equal to f(x)

ACCESS MORE