An electron at Earth's surface experiences a gravitational force meg. How far away can a proton be and still produce the same force on the electron?

Respuesta :

I will discuss what is a gravitational force since no figures are attached or given. An objects weight is dependent upon its location in the universe because they exhibit gravitational waves. For example, the earth is a massive planet. Because of its massiveness, it exhibits a strong gravitational force within it. In turn, the objects near the earth will be attracted to it and thereby feels a much stronger gravity on earth. That is why bodies of water, despite its liquid features, stick to the earth. The heavier the body is, the stronger its gravitational pull. Another example is the Milky Way Galaxy, there is a gravitational pull because it is to other galaxies. Also, other galaxies are heavier than the earth and therefore, it is attracted to the Milky Way galaxy because of its gravitational pull. 

The proton could be 5 m far away from electron.

Further explanation

Newton's gravitational law states that the force of attraction between two objects can be formulated as follows:

[tex]\large {\boxed {F = G \frac{m_1 ~ m_2}{R^2}} }[/tex]

F = Gravitational Force ( Newton )

G = Gravitational Constant ( 6.67 × 10⁻¹¹ Nm² / kg² )

m = Object's Mass ( kg )

R = Distance Between Objects ( m )

Let us now tackle the problem!

Given:

me = 9.11 × 10⁻³¹ kg

qp = qe = 1.6 × 10⁻¹⁹ kg

Unknown:

R = ?

Solution:

[tex]F_e = F_p[/tex]

[tex]m_e \times g = k \times \frac{q_e \times q_p}{R^2}[/tex]

[tex]9.11 \times 10^{-31} \times 9.81 = 9 \times 10^9 \times \frac{(1.6 \times 10^{-19})^2}{R^2}[/tex]

[tex]R \approx 5 ~ m[/tex]

Learn more

  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441

Answer details

Grade: High School

Subject: Physics

Chapter: Gravitational Field

Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant

Ver imagen johanrusli
ACCESS MORE