The Fundamental Theorem of Calculus regarding geometry states that
[tex] \int\limits^b_a g{(x)} \, dx = F(b)-F(a)[/tex]
Where F is the indefinite integral of [tex]g(x)[/tex]
The first step is to integrate [tex]g(x)[/tex]
[tex] \int\ {4x} \, dx = \frac{4x^{1+1} }{1+1} = \frac{4x^{2} }{2} =2 x^{2} [/tex]
Then substitute the value of [tex]b[/tex] and [tex]a=1[/tex] into [tex] 2x^{2} [/tex]
[tex][2 (b)^{2}]-[2 (1)^{2}] = 240 [/tex]
[tex] 2b^{2} -2=240[/tex]
[tex] 2b^{2}=240+2 [/tex]
[tex] 2b^{2}=242 [/tex]
[tex] b^{2}= \frac{242}{2} [/tex]
[tex] b^{2}=121 [/tex]
[tex]b=11[/tex]
Hence the limit of the area under [tex]g(x)[/tex] is between [tex]a=1[/tex] and [tex]b=11[/tex]