Respuesta :
we know that
A relationship between two variables, x, and y, represent an inverse variation if it can be expressed in the form [tex]y*x=k[/tex] or [tex]y=k/x[/tex]
Let
x-------> the pressure in PSI
y------> the volume of the gas in cubic inches
In this problem we have the point [tex](30,600)[/tex]
so
[tex]x=30\ psi\\y=600\ in^{3}[/tex]
Find the constant k
[tex]y*x=k[/tex]
substitute the values of x and y
[tex]600*30=k[/tex]
[tex]k=18,000\ lb*in[/tex]
the equation is
[tex]y=18,000/x[/tex]
therefore
the answer is
[tex]y=18,000/x[/tex]
Answer:
[tex]y=\frac{18000}{x}[/tex]
Step-by-step explanation:
Let the volume of gas be y
Let the pressure be x
Since we are given that the volume of the gas is inversely proportional to its pressure.
⇒[tex]y \propto \frac{1}{x}[/tex]
Let the proportionality be k
So, [tex]y=\frac{k}{x}[/tex] ---A
Now we are given that At a pressure of 30 pounds per square inch (psi), a gas has a volume of 600 cubic inches
So, substitute x = 30
y = 600
[tex]600=\frac{k}{30}[/tex]
[tex]600 \times 30=k[/tex]
[tex]18000 =k[/tex]
Substitute the value of k in A
So, [tex]y=\frac{18000}{x}[/tex]
Hence function can be used to model the volume of the gas y, in cubic inches, when the pressure is x psi is [tex]y=\frac{18000}{x}[/tex]