Respuesta :
Answer: y= 630 is the horizontal asymptote for the given function.
Step-by-step explanation:
Horizontal asymptotes are horizontal lines that the graph of the function approaches as x tends to [tex]+\infty[/tex] or [tex]-\infty[/tex].
Thus, If there is a function f(x),
Then Its horizontal asymptote, y = [tex]\lim_{x\rightarrow \infty} f(x)[/tex]
Here the given function is, [tex]f(x) = \frac{560+630x}{x}[/tex]
Thus its horizontal asysmptote is, y = [tex]\lim_{x\rightarrow \infty} \frac{560+630x}{x}[/tex]
⇒ y = [tex]\lim_{x\rightarrow \infty}560/x+630[/tex]
⇒ y = 0+ 630
⇒ y= 630 is the horizontal asymptote of the given function f(x).
The horizontal asymptote of y = (630x + 560)/x is y = 630.
Linear function
A linear function is given by:
y = mx + b
where y, x are variables, m is the rate of change and b is the y intercept.
Given the total cost as y = 630x + 560.
For the function y = (630x + 560)/x, the horizontal asymptote is at:
y = 630x/ x = 630
The horizontal asymptote of y = (630x + 560)/x is y = 630.
Find out more on Linear function at: https://brainly.com/question/13763238