The total cost of a vacation to a rain forest includes a fee of $560 for the tour guide, plus $630 per person. The function y=560+630x/ x

models the average cost per person, in dollars, when x people go on the vacation.

What is the horizontal asymptote of the function?


y= ????

Respuesta :

Answer: y= 630 is the horizontal asymptote for the given function.

Step-by-step explanation:

Horizontal asymptotes are horizontal lines that the graph of the function approaches as x tends to [tex]+\infty[/tex] or [tex]-\infty[/tex].

Thus, If there is a function f(x),

Then Its horizontal asymptote,  y = [tex]\lim_{x\rightarrow \infty} f(x)[/tex]

Here the given function is, [tex]f(x) = \frac{560+630x}{x}[/tex]

Thus its horizontal asysmptote is, y = [tex]\lim_{x\rightarrow \infty} \frac{560+630x}{x}[/tex]

⇒ y = [tex]\lim_{x\rightarrow \infty}560/x+630[/tex]

⇒ y = 0+ 630

y= 630 is the horizontal asymptote of the given function f(x).

The horizontal asymptote of y = (630x + 560)/x is y = 630.

Linear function

A linear function is given by:

y = mx + b

where y, x are variables, m is the rate of change and b is the y intercept.

Given the total cost as y = 630x + 560.

For the function y = (630x + 560)/x, the horizontal asymptote is at:

y = 630x/ x = 630

The horizontal asymptote of y = (630x + 560)/x is y = 630.

Find out more on Linear function at: https://brainly.com/question/13763238

ACCESS MORE