Respuesta :
QR would equal 4, and PR would equal 2.
if you multiply QP which equals 3, by 3, then you would get 9.
So you would divide BC by 3. 12/3= 4
Then divide AC by 3. 6/3=2.
if you multiply QP which equals 3, by 3, then you would get 9.
So you would divide BC by 3. 12/3= 4
Then divide AC by 3. 6/3=2.
Answer:
[tex]QR=4\ units[/tex]
[tex]RP=2\ units[/tex]
Step-by-step explanation:
we know that
If two triangles are similar
then
the ratio of their corresponding sides are equal
In this problem
triangle ABC is similar triangle PQR -------> given problem
so
[tex]\frac{AB}{PQ}=\frac{CA}{RP}=\frac{BC}{QR}[/tex]
we have
[tex]AB=9\ units, PQ=3\ units,CA=6\ units,BC=12\ units[/tex]
Find the length of side QR
[tex]\frac{AB}{PQ}=\frac{BC}{QR}[/tex]
substitute the values and solve for QR
[tex]\frac{9}{3}=\frac{12}{QR}[/tex]
[tex]QR=12*3/9=4\ units[/tex]
Find the length of side RP
[tex]\frac{AB}{PQ}=\frac{CA}{RP}[/tex]
substitute the values and solve for RP
[tex]\frac{9}{3}=\frac{6}{RP}[/tex]
[tex]RP=6*3/9=2\ units[/tex]