Respuesta :
Answer:
The x-intercept are x=-4,1.
Step-by-step explanation:
Given : The vertex of a parabola is (-1.5, -12.5), and its y-intercept is (0, -8).
To find : The x-intercepts of the parabola are ?
Solution :
The general form of the parabola equation is
[tex]y=a(x-h)^2+k[/tex] ......(1)
where, a is the initial value and (h,k) are vertex of the parabola.
We have given the vertex (h,k)=(-1.5, -12.5)
Substitute in equation (1),
[tex]y=a(x-(-1.5))^2+(-12.5)[/tex]
[tex]y=a(x+1.5)^2-12.5[/tex] ......(2)
Now, The y-intercept is (0,-8)
Substitute in equation (2),
[tex]-8=a(0+1.5)^2-12.5[/tex]
[tex]-8+12.5=a(1.5)^2[/tex]
[tex]4.5=2.25a[/tex]
[tex]a=\frac{4.5}{2.25}[/tex]
[tex]a=2[/tex]
Put back in equation (2),
[tex]y=2(x+1.5)^2-12.5[/tex]
To find the x-intercept put y=0 in above equation,
[tex]0=2(x+1.5)^2-12.5[/tex]
[tex]0=2(x^2+3x+2.25)-12.5[/tex]
[tex]0=2x^2+6x+4.5-12.5[/tex]
[tex]0=2x^2+6x-8[/tex]
[tex]x^2+3x-4=0[/tex]
Solve by middle term split,
[tex]x^2+4x-x-4=0[/tex]
[tex]x(x+4)-1(x+4)=0[/tex]
[tex](x+4)(x-1)=0[/tex]
[tex]x+4=0,x-1=0[/tex]
[tex]x=-4,1[/tex]
Therefore, The x-intercept are x=-4,1.