Respuesta :
I'm not sure if this is what you mean, but the expression can be written as:
(x^3/2 + 3^3/4)(x^3/2 - 3 ^3/4) or ((√x)³ + (⁴√3)³)((√x)³ - (⁴√3)³)
(x^3/2 + 3^3/4)(x^3/2 - 3 ^3/4) or ((√x)³ + (⁴√3)³)((√x)³ - (⁴√3)³)
Answer:
[tex]x^{3}-(\sqrt{x} )^3[/tex]
Step-by-step explanation:
The given expression is x³ - 3√3
We have to rewrite the expression in the forem of difference of cubes.
x³ - 3√3 = x³ - √(3)³
= [tex]x^3-(3)^{\frac{3}{2}}[/tex]
= [tex]x^{3}-(\sqrt{x} )^3[/tex]
Therefore, we can rewrite the expression as
[tex]x^{3}-(\sqrt{x} )^3[/tex]