Respuesta :

Answer: [tex]sec \theta[/tex].


Step-by-step explanation: Given expression : [tex]\frac{sin \theta \ sec \theta }{cos \theta \ tan \theta} .[/tex]

We know,

[tex]sec \theta = \frac{1}{cos \theta}[/tex]

[tex]tan \theta = \frac{sin \theta}{cos \theta}[/tex]

Substituting those values in given expression, we get

[tex]\frac{sin \theta \ sec \theta }{cos \theta \ tan \theta} .[/tex] =[tex]\frac{sin \theta\ \frac{1}{cos \theta} } {cos \theta\ \frac{sin \theta}{cos \theta} }[/tex]

= [tex]\frac{sin \theta \ cos \theta}{cos \theta \ cos \theta \ sin \theta}[/tex]

Crossing out [tex]sin \theta \ cos \theta[/tex] from top and bottom, we get

=[tex]\frac{1}{cos \theta }[/tex]

= [tex]sec \theta[/tex].


Answer:

The simplified form of the given expression [tex]\frac{\sin\theta \cdot \sec\theta}{\cos\theta\cdot \tan\theta}[/tex] is  [tex]\sec\theta[/tex]

Step-by-step explanation:

Given: Expression [tex]\frac{\sin\theta \cdot \sec\theta}{\cos\theta\cdot \tan\theta}[/tex]

We have to writ the given expression in simplified form.

Consider , The given expression [tex]\frac{\sin\theta \cdot \sec\theta}{\cos\theta\cdot \tan\theta}[/tex]

Since, we know,

[tex]\sec\theta=\frac{1}{\cos\theta}[/tex]

and  [tex]\tan\theta=\frac{\sin\theta}{\cos\theta}[/tex]

Substitute, we have,

[tex]\frac{\sin\theta \cdot \sec\theta}{\cos\theta\cdot \tan\theta}=\frac{\sin\theta \cdot\frac{1}{\cos\theta}} {\cos\theta\cdot \frac{\sin\theta}{\cos\theta} }[/tex]

Simplify, we have,

[tex]=\frac{\frac{1}{\cos\theta}} {\cos\theta\cdot \frac{1}{\cos\theta} }[/tex]

Simplify further, we get,

[tex]=\frac{1}{\cos\theta}=\sec\theta[/tex]

Thus, The simplified form of the given expression [tex]\frac{\sin\theta \cdot \sec\theta}{\cos\theta\cdot \tan\theta}[/tex] is  [tex]\sec\theta[/tex]