Respuesta :
Answer: [tex]sec \theta[/tex].
Step-by-step explanation: Given expression : [tex]\frac{sin \theta \ sec \theta }{cos \theta \ tan \theta} .[/tex]
We know,
[tex]sec \theta = \frac{1}{cos \theta}[/tex]
[tex]tan \theta = \frac{sin \theta}{cos \theta}[/tex]
Substituting those values in given expression, we get
[tex]\frac{sin \theta \ sec \theta }{cos \theta \ tan \theta} .[/tex] =[tex]\frac{sin \theta\ \frac{1}{cos \theta} } {cos \theta\ \frac{sin \theta}{cos \theta} }[/tex]
= [tex]\frac{sin \theta \ cos \theta}{cos \theta \ cos \theta \ sin \theta}[/tex]
Crossing out [tex]sin \theta \ cos \theta[/tex] from top and bottom, we get
=[tex]\frac{1}{cos \theta }[/tex]
= [tex]sec \theta[/tex].
Answer:
The simplified form of the given expression [tex]\frac{\sin\theta \cdot \sec\theta}{\cos\theta\cdot \tan\theta}[/tex] is [tex]\sec\theta[/tex]
Step-by-step explanation:
Given: Expression [tex]\frac{\sin\theta \cdot \sec\theta}{\cos\theta\cdot \tan\theta}[/tex]
We have to writ the given expression in simplified form.
Consider , The given expression [tex]\frac{\sin\theta \cdot \sec\theta}{\cos\theta\cdot \tan\theta}[/tex]
Since, we know,
[tex]\sec\theta=\frac{1}{\cos\theta}[/tex]
and [tex]\tan\theta=\frac{\sin\theta}{\cos\theta}[/tex]
Substitute, we have,
[tex]\frac{\sin\theta \cdot \sec\theta}{\cos\theta\cdot \tan\theta}=\frac{\sin\theta \cdot\frac{1}{\cos\theta}} {\cos\theta\cdot \frac{\sin\theta}{\cos\theta} }[/tex]
Simplify, we have,
[tex]=\frac{\frac{1}{\cos\theta}} {\cos\theta\cdot \frac{1}{\cos\theta} }[/tex]
Simplify further, we get,
[tex]=\frac{1}{\cos\theta}=\sec\theta[/tex]
Thus, The simplified form of the given expression [tex]\frac{\sin\theta \cdot \sec\theta}{\cos\theta\cdot \tan\theta}[/tex] is [tex]\sec\theta[/tex]