Respuesta :

Answer: [tex]Cot\theta =\frac{\sqrt{15} }{7}[/tex]

Step-by-step explanation:

Since, given [tex]cosec\theta=\frac{8 }{7}[/tex]

And we know that [tex]Cot\theta=\sqrt{cosec^2\theta-1}[/tex]

Therefore, [tex]Cot\theta=\sqrt{cosec^2\theta-1} = \sqrt{(8/7)^2-1}= \sqrt{64/49-1}[/tex]

⇒[tex]Cot\theta=\sqrt{64-49/49}=\sqrt{15/49}=\sqrt{15}/7[/tex]

Thus,  [tex]Cot\theta =\frac{\sqrt{15} }{7}[/tex]


Answer:

CotA=√15/7

Step-by-step explanation:

cosecA=8/7=hypotenuse/perpendicular

We have to find cotA

We do this by right angled triangle

We use pythagoras theorem to find the base

Base²+Perpendicular²=hypotenuse²

Base²+7²=8²

Base²=15

Base=√15

cotA=Base/Perpendicular

     = √15/7

ACCESS MORE