Respuesta :
Answer: [tex]Cot\theta =\frac{\sqrt{15} }{7}[/tex]
Step-by-step explanation:
Since, given [tex]cosec\theta=\frac{8 }{7}[/tex]
And we know that [tex]Cot\theta=\sqrt{cosec^2\theta-1}[/tex]
Therefore, [tex]Cot\theta=\sqrt{cosec^2\theta-1} = \sqrt{(8/7)^2-1}= \sqrt{64/49-1}[/tex]
⇒[tex]Cot\theta=\sqrt{64-49/49}=\sqrt{15/49}=\sqrt{15}/7[/tex]
Thus, [tex]Cot\theta =\frac{\sqrt{15} }{7}[/tex]
Answer:
CotA=√15/7
Step-by-step explanation:
cosecA=8/7=hypotenuse/perpendicular
We have to find cotA
We do this by right angled triangle
We use pythagoras theorem to find the base
Base²+Perpendicular²=hypotenuse²
Base²+7²=8²
Base²=15
Base=√15
cotA=Base/Perpendicular
= √15/7