Use the distance formula to find the length of the sides, then add them up to find the perimeter.
[tex]\sf d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
For points in the form of (x1, y1), (x2, y2).
(-1, 2), (3, 1)
[tex]\sf d=\sqrt{(3+1)^2+(1-2)^2}[/tex]
[tex]\sf d=\sqrt{(4)^2+(-1)^2}[/tex]
[tex]\sf d=\sqrt{16+1}[/tex]
[tex]\sf d=\sqrt{17}[/tex]
(3, 1), (7, 2)
[tex]\sf d=\sqrt{(7-3)^2+(2-1)^2}[/tex]
[tex]\sf d=\sqrt{(4)^2+(1)^2}[/tex]
[tex]\sf d=\sqrt{16+1}[/tex]
[tex]\sf d=\sqrt{17}[/tex]
(7, 2), (-1, 2)
[tex]\sf d=\sqrt{(-1-7)^2+(2-2)^2}[/tex]
[tex]\sf d=\sqrt{(-8)^2+(0)^2}[/tex]
[tex]\sf d=\sqrt{64+0}[/tex]
[tex]\sf d=\sqrt{64}=8[/tex]
So the perimeter will be:
[tex]\sf 8+\sqrt{17}+\sqrt{17}\approx\boxed{\sf 16.25}[/tex]