Respuesta :
2x -1 <7 ; then, 2x < 8; then x < 4;
5x + 3 < 3; then, 5x < 0; then x < 0;
Finally, {x / x < 0};
5x + 3 < 3; then, 5x < 0; then x < 0;
Finally, {x / x < 0};
Answer:
Solution for givrn system of inequalities: [tex]\{x ~| ~x < 0\}[/tex]
Step-by-step explanation:
We are given a system of two inequalities:
[tex]2x-1 < 7\\5x+3 < 3[/tex]
Solving the inequalities individually:
[tex]2x-1 < 7\\2x<7+1\\2x < 8\\x < 4\\\text{In interval notation: } x \in (-\infty, 4) \\\\5x + 3 < 3\\5x < 3-3\\5x < 0\\x< 0\\\text{In interval notation: } x \in (-\infty, 0)[/tex]
The intersection of the two solution will give us the solution to the system of inequalities:
[tex]x \in (-\infty, 4) \cap (-\infty, 0)\\ x \in (-\infty, 0) \\\{x ~| ~x < 0\}[/tex]