Respuesta :

[tex]T:\mathbb R^3\to\mathbb R^2[/tex] will be linear if for any [tex]\mathbf x,\mathbf y\in\mathbb R^3[/tex] and constants [tex]a,b\in\mathbb R[/tex], we have

[tex]T(a\mathbf x+b\mathbf y)=aT(\mathbf x)+bT(\mathbf y)[/tex]

Let [tex]\mathbf x=(x_1,x_2,x_3)[/tex] and [tex]\mathbf y=(y_1,y_2,y_3)[/tex], and let [tex]a,b[/tex] be any two scalars. Then

[tex]a\mathbf x+b\mathbf y=(ax_1+by_1,ax_2+by_2,ax_3+by_3)[/tex]

By definition of [tex]T[/tex], we have

[tex]T(a\mathbf x+b\mathbf y)=(-2ax_2-2by_2,6ax_3+6by_3)[/tex]
[tex]T(a\mathbf x+b\mathbf y)=(-2ax_2,6ax_3)+(-2by_2,6by_3)[/tex]
[tex]T(a\mathbf x+b\mathbf y)=a(-2x_2,6x_3)+b(-2y_2,6y_3)[/tex]
[tex]T(a\mathbf x+b\mathbf y)=aT(\mathbf x)+bT(\mathbf y)[/tex]

Therefore [tex]T[/tex] is a linear transformation.
ACCESS MORE