Respuesta :

bcalle
2pi/3 has the same Sin, Cos, & Tan as pi/3 in QI except for the SIGNS.
2pi/3 is in QII so Cos is negative and Tangent is negative, Sine is still positive.
Sin 2pi/3 = √(3) / 2
Cos 2pi/3 = -1/2
Tan 2pi/3 = -√3

Answer:

Sin ([tex]\frac{2\ pi}{3}[/tex]) = [tex]\frac{\sqrt{3}}{2}[/tex] ,Tan ([tex]\frac{2\ pi}{3}[/tex]) = -[tex]\sqrt{3}[/tex]

Cos([tex]\frac{2\ \pi}{3}[/tex]) = [tex]\frac{1}{2}[/tex].

Step-by-step explanation:

Given :  2pi/3 radians.

To find : What are the sine, cosine, and tangent .

Solution : We have given that [tex]\frac{2\ pi}{3}[/tex].

Sin ( [tex]\frac{2\ pi}{3}[/tex])

Sin ([tex]\frac{2\ pi}{3}[/tex]) = [tex]\frac{\sqrt{3}}{2}[/tex]

Tan ([tex]\frac{2\ pi}{3}[/tex]) = -[tex]\sqrt{3}[/tex]

Cos([tex]\frac{2\ pi}{3}[/tex]) =  [tex]\frac{1}{2}[/tex].

Therefore, Sin ([tex]\frac{2\ pi}{3}[/tex]) = [tex]\frac{\sqrt{3}}{2}[/tex]

Tan ([tex]\frac{2\ pi}{3}[/tex]) = -[tex]\sqrt{3}[/tex]

Cos([tex]\frac{2\ pi}{3}[/tex]) = [tex]\frac{1}{2}[/tex].

ACCESS MORE