The variable z is directly proportional to x and inversely proportional to y. When x is 12 and y is 18 z has the value 2 what is the value of z when x = 19 and y = 22

Respuesta :

[tex]\bf \qquad \qquad \textit{double proportional variation}\\\\ \begin{array}{llll} \textit{\underline{y} varies directly with \underline{x}}\\ \textit{and inversely with \underline{z}} \end{array}\implies y=\cfrac{kx}{z}\impliedby \begin{array}{llll} k=constant\ of\\ variation \end{array}\\\\ -------------------------------\\\\[/tex]

[tex]\bf z=\cfrac{kx}{y}\impliedby \begin{array}{llll} \textit{directly proportional to "x"}\\ \textit{and inversely proportional to "y"} \end{array} \\\\\\ \textit{we also know that } \begin{cases} x=12\\ y=18\\ z=2 \end{cases}\implies 2=\cfrac{k12}{18}\implies \cfrac{2\cdot 18}{12}=k \\\\\\ \boxed{3=k}\qquad thus\qquad \boxed{z=\cfrac{3x}{y}}\\\\ -------------------------------\\\\ \textit{what's "z" when } \begin{cases} x=19\\ y=22 \end{cases}\implies z=\cfrac{3\cdot 19}{22}[/tex]
ACCESS MORE