Respuesta :
[tex]x^2=19x+1 \\ x^2 -19x-1=0 \\ x= \frac{19б \sqrt{(-19)^2-4*1*(-1)} }{2*1}= \frac{19б \sqrt{361+4} }{2}= \frac{19б \sqrt{365} }{2}[/tex]
The quadratic function has a degree of 2. The solution to the given quadratic function is [tex]x=\frac{19\pm \sqrt{365}}{2}[/tex]
The solution to a quadratic equation
The quadratic function has a degree of 2. Given the quadratic function expressed as:
x^2 = 19x + 1
This can also be written as:
x^2 - 19x - 1 = 0
Using the general formula expressed as:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
From the equation
a = 1
b = -19
c = -1
Substitute
[tex]x=\frac{19\pm \sqrt{19^2-4(1)(-1)}}{2} \\x=\frac{19\pm \sqrt{365}}{2}[/tex]
Hence the solution to the given quadratic function is [tex]x=\frac{19\pm \sqrt{365}}{2}[/tex]
Learn more on quadratic function here: https://brainly.com/question/25841119