Respuesta :

basically you write an exponential function for y=ab^x for a graph that includes (1,15) and (0,6)
then using (0,6) you get: 6 = ab^0 
and using (1,15) you get 15 = ab^1

Equations:
a = 6
ab = 15
So, b = 15/6 = 5/2
Equation:
y = 6(5/2)^x

Answer:

The required exponential function is [tex]y=6(\frac{5}{2})^x[/tex].

Step-by-step explanation:

The general exponential function is

[tex]y=ab^x[/tex]

It is given that graph includes (1,15) and (0,6). It means the equation must be satisfied by these points.

[tex]15=ab^1[/tex]              .... (1)

[tex]6=ab^0[/tex]

[tex]6=a[/tex]

The value of a is 6. Put this value in equation (1).

[tex]15=(6)b[/tex]

Divide both sides by 6.

[tex]\frac{15}{6}=b[/tex]

[tex]\frac{5}{2}=b[/tex]

The value of b is [tex]\frac{5}{2}[/tex].

Put a=6 and [tex]b=\frac{5}{2}[/tex] in the general exponential function.

[tex]y=6(\frac{5}{2})^x[/tex]

Therefore the required exponential function is [tex]y=6(\frac{5}{2})^x[/tex].

ACCESS MORE