Respuesta :
Marta got the expression
[tex]2x\cdot x^2 + 2x\cdot x + 2x\cdot (-2) + 3\cdot x^2 + 3\cdot x + 3\cdot (-2).[/tex]
First, note that
[tex]2x\cdot x^2=2x^3,\\2x\cdot x=2x^2,\\2x\cdot (-2)=-4x,\\3\cdot x^2=3x^2,\\ 3\cdot x=3x,\\3\cdot (-2)=-6.[/tex]
Then add terms with the same degree:
[tex]2x^2+3x^2=5x^2,\\-4x+3x=-x.[/tex]
At last,
[tex](2x+3)(x^2 + x - 2)=2x^3+5x^2-x-6.[/tex]
Answer: correct choice is C.
The resultant product of the given polynomials is [tex]2x^3+5x^2-x-6[/tex]. Option C is correct.
Given information:
Using the distributive property, Marta multiplied the binomial (2x + 3) by the trinomial [tex](x^2 + x - 2)[/tex].
The resultant of the above product is [tex](2x)(x^2) + (2x)(x) + (2x)(-2) + (3)(x^2) + (3)(x) + (3)(-2)[/tex].
Solve the given product as,
[tex](2x+3)(x^2+x-2)=(2x)(x^2) + (2x)(x) + (2x)(-2) + (3)(x^2) + (3)(x) + (3)(-2)\\=2x^3+2x^2-4x+3x^2+3x-6\\=2x^3+5x^2-x-6[/tex]
Therefore, the resultant product of the given polynomials is [tex]2x^3+5x^2-x-6[/tex]. Option C is correct.
For more details, refer to the link:
https://brainly.com/question/23675883