Respuesta :
the greatest rectangular area would actually be a square
so 188/4 = 47 feet per side
so 47ft x 47ft
area = 47^2 = 2209 square feet
Answer:
length =47 ft
width = 47 ft
Area=2209 square feet
Step-by-step explanation:
Hello
let's remember the rectangular area equation
A=length (l)* width( w)
the perimeter of that area is given by
P=2l+2w
step 1
Let
x=length of the greatest posible area
y=width of the greatest posible area
so
[tex]A_{max} =x*y(equation\ (1)[/tex]
the perimeter of that area is
[tex]P=2x+2y[/tex]
step 2
justin use 188ft,hence
[tex]P=2x+2y=188\\2x+2y=188\\subtract\ 2x\ in\ each\ side\\2x+2y-2x=188-2x\\2y=188-2x\\\\divide\ each\ by\ 2\\\frac{2y}{2}=\frac{188-2x}{2} \\y=94-x[/tex]
y=94-x equation (2)
step 2
Now replace (2) in (1)
[tex]A_{max} =x*y\\A_{max} =x*(94-x)\\A_{max} =94x-x^{2}[/tex]
Now, he have the area as a function of x
[tex]A_{max} =94x-x^{2}[/tex]
derive to find the maxims of the function,by doing A(x)' = 0
[tex]A_{max} =94x-x^{2}\\A' =94-2x \\A' =94-2x\\94-2x=0\\x=47[/tex]
x=47 (equation 3)
to figure out if is a maxim verify
[tex]A(x)'' > 0?[/tex]
[tex]A' =94-2x\\A'' =94-2\\92 >0[/tex]
so, x=94
effectively is a maxim
Step 3
replace (3) in (2)
[tex]A_{max} =x*y\\A_{max} =94x-x^{2}equation(4)\\replacing x=47 in (4)\\A_{max}=94*47-47^{2}\\ A_{max}=2209\ ft^{2}[/tex]
Step 4
now, replace (3) in (1) to find y
[tex]y=94-x\\y=94-47\\y=47[/tex]
step 5
answer
the dimensions should be
length =47 ft
width = 47 ft
the greatest area possible is 47ft*47 ft = 2209 square feet
Have a great day