The base of the parallelogram, b, can be found by dividing the area by the height. If the area of the parallelogram is represented by 6x2 + x + 3 and the height is 3x, which represents b, the length of the base

Respuesta :

In this item, we have:

             A = 6x² + x +3
              h = 3x

where ''A'' is area and ''h'' is height. From the statement above, 
                         length of base, b = A / h
 
                               b = (6x² + x + 3)/3x

Thus, the expression for the length of the base is 6x²+x+3 / 3x. 

Answer:

[tex]2x+\frac{1}{3}+\frac{1}{x}=Base[/tex]

Step-by-step explanation:

Given: The area of the parallelogram is [tex]6x^2+x+3[/tex] and the height is 3x.

To find: The base of the given parallelogram.

Solution: It is given that The area of the parallelogram is [tex]6x^2+x+3[/tex] and the height is 3x.

Now, area of parallelogram is given as:

[tex]A=b{\times}h[/tex] where b is the base and h is the height of teh gievn parallelogram.

Substituting the given values, we have

[tex]6x^2+x+3=b{\times}3x[/tex]

⇒[tex]\frac{6x^2+x+3}{3x}=Base[/tex]

⇒[tex]\frac{6x^2}{3x}+\frac{x}{3x}+\frac{3}{3x}=Base[/tex]

[tex]2x+\frac{1}{3}+\frac{1}{x}=Base[/tex]

which is the required expression for the base of the given parallelogram.

ACCESS MORE