Respuesta :

We are dividing the polynomial [tex]2x^{2} +13x+26[/tex] by x+4

notice that [tex]2x^{2}[/tex] is x times 2x,

so if we multiply (x+4) by 2x, which gives us [tex]2 x^{2} +8x[/tex], we can 'separate' one [tex]2 x^{2} +8x[/tex] from [tex]2x^{2} +13x+26[/tex]  to get the following simplification:

[tex] \frac{2x^{2} +13x+26}{x+4}= \frac{ 2x^{2}+8 x}{x+4} + \frac{5x+26}{x+4}=2x+ \frac{5x+26}{x+4}[/tex]

similarly we notice that 5x is x times 5, so if we multiply (x+4) by 5, we get 5x+20 so we can rewrite 

[tex]\frac{5x+26}{x+4}= \frac{5x+20}{x+4}+ \frac{6}{x+4}=5+\frac{6}{x+4}[/tex]

[tex]\frac{6}{x+4}[/tex] can not be simplified any further since the degree of 6, is smaller than the degree of x+4

combining our work, we have:

[tex]\frac{2x^{2} +13x+26}{x+4}=2x+5+\frac{6}{x+4}[/tex]

Answer:

q(x)= 2x+5
r(x)=6
b(x)=x+4


Remark: we can solve the problem by long division or the division algorithm as well.

Answer:

Q(x)= 2x+5

R(x)= 6

Step-by-step explanation:

ACCESS MORE