Respuesta :
[tex]\mu[\tex]=8
[tex]\sigma[\tex]=0.7
x=9
Z=(x-[tex]\mu[\tex])/[tex]\sigma[\tex]
=(9-8)/0.7
=1.43
=1.4 [to the nearest tenth]
[tex]\sigma[\tex]=0.7
x=9
Z=(x-[tex]\mu[\tex])/[tex]\sigma[\tex]
=(9-8)/0.7
=1.43
=1.4 [to the nearest tenth]
Answer: The z-score of the value 9 rounded to the nearest tenth = 1.4
Step-by-step explanation:
Given: Mean [tex]\mu=8[/tex]
Standard deviation [tex]\sigma=0.7[/tex]
The given random value x= 9
Now, the formula to calculate the z score is given by:-
[tex]z=\dfrac{x-\mu}{\sigma}\\\\\Rightarrow\ z=\dfrac{9-8}{0.7}\\\\\Rightarrow\ z=1.42857142857\approx1.4[/tex]
Hence, the z-score of the value 9 rounded to the nearest tenth = 1.4