Respuesta :
We are given that the
coordinates of the vertices of the rhombus are:
A(-6, 3)
B(-4, 4)
C(-2, 3)
D(-4, 2)
To solve this problem, we must plot this on a graphing paper or graphing
calculator to clearly see the movement of the graph. If we transform this by
doing a counterclockwise rotation, then the result would be:
A(-6, -3)
B(-4, -4)
C(-2, -3)
D(-4, -2)
And the final transformation is translation by 3 units left and 2 units down. This can still be clearly solved by actually graphing the plot. The result of this transformation would be:
A′(6, -8)
B′(7, -6)
C′(6, -4)
D′(5, -6)
Answer:
A'(-6, -8)
B'(-7, -6)
C'(-6, -4)
D'(-5, -6)
Step-by-step explanation:
The 90 ° rotation rule counterclockwise on the origin is:
(x, y) -> (-y, x)
Rotating the rhombus in the given coordinates, we have
A(-6, 3) -> A'(-3, -6)
B(-4, 4) -> B'(-4, -4)
C(-2, 3) -> C'(-3, -2)
D(-4, 2) -> D'(-2, -4)
The translation rule is:
(x, y) -> (x + h, y + k)
Where
h = horizontal change = - 3 (3 units to the left)
k = vertical change = - 2 (2 units down)
When translating, the following coordinates are obtained:
A'(-3, -6) -> A'(-3-3, -6-2) -> A'(-6, -8)
B'(-4, - 4) -> B'(-4-3, -4-2) -> B'(-7, -6)
C'(-3, -2) -> C'(-3-3, -2-2) -> C'(-6, -4)
D'(-2, -4) -> D'(-2-3, -4-2) -> D'(-5, -6)
The final coordinates are:
A'(-6, -8)
B'(-7, -6)
C'(-6, -4)
D'(-5, -6)
Hope this helps!