Respuesta :
no because the maximum amount for sin and cos is 1.if alpha is 90 and beta is 0 the answer is 7 so it's not right.
Answer:
No, it's not possible
Step-by-step explanation:
We know that for various values of x , [tex]-1\leq \sin x\leq 1[/tex]
and [tex]-1\leq \cos x \leq 1[/tex]
For values of [tex]\alpha[/tex], [tex]-1\leq \sin \alpha\leq 1[/tex]
On multiplying all sides by 3, we get
[tex]-3\leq 3\sin \alpha\leq 3[/tex]
For values of [tex]\beta[/tex], [tex]-1\leq\cos \beta\leq 1[/tex]
On multiplying all sides by 4, we get
[tex]-4\leq 4\cos \beta\leq 4[/tex]
On adding all sides of [tex]-3\leq 3\sin \alpha\leq 3\,\,,\,\,-4\leq 4\cos \beta\leq 4[/tex] , we get
[tex]-3-4\leq 3\sin \alpha+ 4\cos \beta\leq 3+4\\-7\leq 3\sin \alpha+ 4\cos \beta\leq 7[/tex]
Therefore, maximum value of [tex]3\sin \alpha+ 4\cos \beta[/tex] is 7.
So, it's not possible that [tex]3\sin \alpha+ 4\cos \beta=8[/tex]