Respuesta :

Answer:

A. [tex]x=3[/tex]

Step-by-step explanation:

We have been given an equation [tex](8x-8)^{\frac{3}{2}}=64[/tex] and we are asked to find the solution for our given equation.

First of all let us raise both sides of our equation to 2/3 power.

[tex]((8x-8)^{\frac{3}{2}})^{\frac{2}{3}}=(64)^{\frac{2}{3}}[/tex]

Using the exponent property [tex](a^b)^c=a^{b*c}[/tex] we will get,

[tex](8x-8)^{\frac{3}{2}\times \frac{2}{3}}=(64)^{\frac{2}{3}}[/tex]

[tex](8x-8)^1=(64)^{\frac{2}{3}}[/tex]

Using exponent property [tex]a^{\frac{m}{n}}=\sqrt[n]{a^m}[/tex] we will get,

[tex](8x-8)=\sqrt[3]{64^2}[/tex]

[tex]8x-8=\sqrt[3]{4096}[/tex]

[tex]8x-8=16[/tex]

[tex]8x-8+8=16+8[/tex]

[tex]8x=24[/tex]

Let us divide both sides of our equation by 8.

[tex]\frac{8x}{8}=\frac{24}{8}[/tex]

[tex]x=3[/tex]

Therefore, the solution for our given equation is 3 and option A is the correct choice.

The solution of the equation [tex]{\left( {8x - 8} \right)^{\dfrac{3}{2}}}= 64\: {\text{is}\: \boxed{x = 3}.[/tex]

Further explanation:

Given:

The exponent equation is [tex]{\left( {8x - 8} \right)^{\dfrac{3}{2}}} = 64.[/tex]

Calculation:

The exponents are the powers on the numbers.

The rules of exponents are as follows,

1.[tex]\boxed{\left( {{x^m}}\right)\times \left( {{x^n}}\right) = {x^{m + n}}}[/tex]

2. [tex]\boxed{\dfrac{{{x^m}}}{{{x^n}}} = {x^{m - n}}}[/tex]

3. [tex]\boxed{{{\left({{x^a}} \right)}^b} = {x^{a \times b}}}[/tex]

4. [tex]\boxed{{x^{\dfrac{m}{n}}} = \sqrt[n]{{{x^m}}}}[/tex]

Solve the equation [tex]{\left( {8x - 8}\right)^{\dfrac{3}{2}}} = 64[/tex] to obtain the value of x.

[tex]\begin{aligned}{\left({8x - 8} \right)^{\frac{3}{2}}}&= 64\\{\left({{{\left( {8x - 8} \right)}^{\frac{3}{2}}}} \right)^{\frac{2}{3}}}&= {\left( {64} \right)^{\frac{2}{3}}}\\8x - 8&= \sqrt[3]{{{{64}^2}}}\\8x - 8&=\sqrt[3]{{4096}}\\\end{aligned}[/tex]

Further solve the above equation.

[tex]\begin{aligned}8x - 8&= 16\\8x &= 16 + 8\\8x&=24\\x&= \frac{{24}}{8}\\x&= 3\\\end{aligned}[/tex]

Hence, the solution of the equation [tex]{\left( {8x - 8} \right)^{\dfrac{3}{2}}} = 64\:{\text{is}\:\boxed{x = 3}.[/tex]

Learn more:

1. Learn more about unit conversion https://brainly.com/question/4837736

2. Learn more about non-collinear https://brainly.com/question/4165000

3. Learn more aboutbinomial and trinomialhttps://brainly.com/question/1394854

Answer details:

Grade: High School

Subject: Mathematics

Chapter: Exponents

Keywords: Solution, [tex]{\left( {8x - 8} \right)^{\dfrac{3}{2}}} = 64[/tex], exponents, power, equation, power rule, exponent rule.

ACCESS MORE