Respuesta :
cosine theorem can be used to calculate any of these three angles
cosα=(150^2+172^2-98^2)/2*150*172
cosα=(150^2+172^2-98^2)/2*150*172
Answer:
Angles are 34.59°, 85.08° and 60.33°
Step-by-step explanation:
Let ABC is a triangle, ( that show the dog park)
In which,
AB = 150 feet
BC = 98 feet
CA = 172 feet,
By the cosine law,
[tex]BC^2=AB^2+AC^2-2(AB)(AC)cos A[/tex]
[tex]2(AB)(AC)cos A=AB^2+AC^2-BC^2[/tex]
[tex]\implies cos A=\frac{AB^2+AC^2-BC^2}{2(AB)(AC)}-----(1)[/tex]
Similarly,
[tex]\implies cos B=\frac{AB^2+BC^2-AC^2}{2(AB)(BC)}-----(2)[/tex]
[tex]\implies cos C=\frac{BC^2+AC^2-AB^2}{2(BC)(AC)}-----(3)[/tex]
By substituting the values in equation (1),
[tex]cos A=\frac{150^2+172^2-98^2}{2\times 150\times 172}[/tex]
[tex]=\frac{22500+29584-9604}{51600}[/tex]
[tex]=\frac{42480}{51600}[/tex]
[tex]\approx 0.8233[/tex]
[tex]\implies m\angle A\approx 34.59^{\circ}[/tex]
Similarly,
From equation (2) and (3),
m∠B ≈ 85.0°, m∠C ≈ 60.33°