Respuesta :
Answer:
P(7,3) = 210
Step-by-step explanation:
Given : P(7,3)
We have to evaluate the given permutation P(7,3)
We can define P(n,r) is defined as the number of possibilities of choosing r objects from a total of n objects.
[tex]nPr=\frac{n!}{\left(n-r\right)!}[/tex]
For given P(7,3)
Put n = 7 and r = 3 , we have,
[tex]=\frac{7!}{\left(7-3\right)!}[/tex]
Simplify, we have,
[tex]=\frac{7!}{4!}[/tex]
Cancel the factorials, [tex]\frac{n!}{\left(n-m\right)!}=n\cdot \left(n-1\right)\cdots \left(n-m+1\right),\:n>m[/tex]
[tex]\frac{7!}{4!}=7\cdot \:6\cdot \:5[/tex]
Simplify, we have,
= 210
Thus, P(7,3) = 210