Respuesta :
24 and 36 have a lcm of 12.
a^3 and a have a lcm of a
b and b^2 have a lcm of b.
12ab
a^3 and a have a lcm of a
b and b^2 have a lcm of b.
12ab
Answer:
The LCM of given expressions is [tex]72a^3b^2[/tex].
Step-by-step explanation:
The given expressions are
[tex]24a^3b[/tex]
[tex]36ab^2[/tex]
Find factor form of each expression.
[tex]24a^3b=2\times 2\times 2\times 3\times a\times a\times a\times b[/tex]
[tex]36ab^2=2\times 2\times 3\times 3\times a\times b\times b[/tex]
LCM is the product of all factors where common factors are considered only once.
[tex]LCM(24a^3b,36ab^2)=2\times 2\times 2\times 3\times 3\times a\times a\times a\times b\times b[/tex]
[tex]LCM(24a^3b,36ab^2)=72a^3b^2[/tex]
Therefore the LCM of given expressions is [tex]72a^3b^2[/tex].