Respuesta :

Number of cans donated the first week = 132
Number of cans donated the second week = 146
Number of cans donated the third week = c, where c is some positive number

Add up the three values (132, 146, and c) to get 132+146+c. I'm choosing not to simplify because each answer choice hasn't simplified either.

The expression of 132+146+c represents the total amount of cans donated for weeks 1 through 3. We want "at least 325 cans", so that means the expression is 325 or larger. That translates to this inequality

[tex]132+146+c \ge 325[/tex]

The "greater than or equal to" sign indicates we want that sum to be 325 or larger.

Now we solve for c

[tex]132+146+c \ge 325[/tex]
[tex]278+c \ge 325[/tex]
[tex]278+c-278 \ge 325-278[/tex]
[tex]c \ge 47[/tex]

So the amount of cans donated for week three needs to be 47 or larger. If you collect exactly 47 cans for week three, then you meet the goal of 325 total cans. If you collect more than 47 cans for week three, then you exceed the goal of 325 total cans.

------------------------------------

In summary we have the inequality 
[tex]132+146+c \ge 325[/tex]
which solves to
[tex]c \ge 47[/tex]

Meaning that the answer is choice D