ma[tex]k\mathbf u+\mathbf v=k(-1,1,1)+(-7,6,15)=(-k-7,k+6,k+15)[/tex]
Recall that for a vector [tex]\mathbf x\in\mathbb R^n[/tex], we have [tex]\|\mathbf x\|=\sqrt{\mathbf x\cdot\mathbf x}[/tex]. So we have
[tex]\|k\mathbf u+\mathbf v\|=\sqrt{(k\mathbf u+\mathbf v)(k\mathbf u+\mathbf v)}=7[/tex]
[tex]\implies k^2\mathbf u\cdot\mathbf u+2k\mathbf u\cdot\mathbf v+\mathbf v\cdot\mathbf v=49[/tex]
[tex]\implies3k^2+56k+261=0[/tex]
[tex]\implies k=-9,-\dfrac{29}3[/tex]