[tex]\it a_{15} =126=3\cdot42
\\\;\\a_1=3n=?
\\\;\\
3, 6, 9, 12, ... , 3n, ..., 3\cdot42 [/tex]
[tex]\it 42-(n-1) =15 \Rightarrow n-1=42-15=27 \Rightarrow n=28 \Rightarrow
\\\;\\
\Rightarrow a_1=3\cdot28= 84[/tex]
Now, we have the sequence :
[tex]\it a_1= 3\cdot28 = 84 \notin M_9
\\\;\\
a_2= 3\cdot29 = 87 \notin M_9
\\\;\\
a_3= 3\cdot30 = 90 \in M_9
\\\;\\
\vdots[/tex]
[tex]\it a_{15} =3\cdot42=126 \in M_9
\\\;\\
90\leq9\cdot k\leq126 |:9 \Rightarrow 10\leq k\leq14 \Rightarrow k \in \{10, 11, 12, 13, 14\}[/tex]
It implies 5 multiples of 9
At a glance : {90, 99, 108, 117, 126}