In the figure, if m∠ABD = 120º, then m∠ADC = ___
![In the figure if mABD 120º then mADC class=](https://us-static.z-dn.net/files/dff/865f390d849f1f67e578b457a09a2065.png)
Answer-
[tex]\boxed{\boxed{m\angle ADC=132^{\circ}}}[/tex]
Solution-
Law of Sines-
[tex]\dfrac{a}{\sin A} =\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]
Here,
B = 120°
b = 35 units
d = 30 units
Let us assume that m∠ADC be x, so m∠ADB=180-x (as they are complementary angles)
Applying Laws of sine for ΔABD,
[tex]\Rightarrow \dfrac{b}{\sin B}=\dfrac{d}{\sin D}[/tex]
[tex]\Rightarrow \dfrac{35}{\sin 120}=\dfrac{30}{\sin (180-x)}[/tex]
[tex]\Rightarrow \sin (180-x)=\dfrac{30\times \sin 120}{35}[/tex]
[tex]\Rightarrow \sin (180-x)=\dfrac{3\sqrt{3}}{7}=0.742[/tex]
[tex]\Rightarrow 180-x=\sin^{-1}0.742[/tex]
[tex]\Rightarrow 180-x=47.9\approx 48[/tex]
[tex]\Rightarrow x=180-48=132^{\circ}[/tex]
The measure of the ∠ADC in the figure, if ∠ABD = 120º is 132.0716°.
Given to us
∠ABD = 120°
We know that we can apply the rule of sine rule in the ΔABD, therefore,
[tex]\dfrac{Sin{\angle ABD}}{AD} =\dfrac{Sin{\angle ADB}}{AB}[/tex]
substitute the values,
[tex]\dfrac{Sin\ {120^o}}{35} =\dfrac{Sin{\angle ADB}}{30}[/tex]
Sin ∠ADB = 0.7423
∠ADB = 47.928°
The supplementary angle are angles whose sum measure 180°
∠ADB + ∠ADC = 180°
47.928° + ∠ADC = 180°
∠ADC = 132.0716°
Hence, the measure of the ∠ADC in the figure, if ∠ABD = 120º is 132.0716°.
Learn more about Supplementary Angles:
https://brainly.com/question/3027144