Respuesta :

the answer is
-√3-1÷4

Answer:

[tex]\cos \left ( 225^{\circ} \right )\cos \left ( 75^{\circ} \right )=\frac{1-\sqrt{3}}{4}[/tex]

Step-by-step explanation:

To find: [tex]\cos \left ( 225^{\circ} \right )[/tex]

[tex]\cos \left ( 225^{\circ} \right )=\cos \left ( 180^{\circ}+45^{\circ} \right )[/tex]

Now, angle [tex]180^{\circ}+45^{\circ}[/tex] lies in third quadrant in which [tex]\cos[/tex] is negative

So, [tex]\cos \left ( 225^{\circ} \right )=\cos \left ( 180^{\circ}+45^{\circ} \right )=-\cos 45^{\circ}[/tex]

We know that [tex]\cos 45^{\circ}=\frac{1}{\sqrt{2}}[/tex]

So, [tex]\cos \left ( 225^{\circ} \right )=\frac{-1}{\sqrt{2}}[/tex]

To find: [tex]\cos \left ( 75^{\circ} \right )[/tex]

[tex]\cos \left ( 75^{\circ} \right )=\cos \left ( 90^{\circ}-15^{\circ} \right )[/tex]

We know that angle [tex]90^{\circ}-15^{\circ}[/tex] lies in first quadrant in which [tex]\cos[/tex] is positive. Also, [tex]\cos \left ( 90-\alpha  \right )=\sin \alpha[/tex]

So, [tex]\cos \left ( 75^{\circ} \right )=\cos \left ( 90^{\circ}-15^{\circ} \right )=\sin \left ( 15^{\circ} \right )[/tex]

We will use formula: [tex]\sin \left ( A-B \right )=\sin A\cos B-\cos A\sin B[/tex]

Here,

[tex]\sin \left ( 15^{\circ} \right )=\sin \left ( 45^{\circ}-30^{\circ} \right )=\sin \left ( 45^{\circ} \right )\cos \left ( 30^{\circ} \right )-\cos \left ( 45^{\circ} \right )\sin \left ( 30^{\circ} \right )=\left ( \frac{1}{\sqrt{2}} \right )\left ( \frac{\sqrt{3}}{2} \right )-\left ( \frac{1}{\sqrt{2}} \right )\left ( \frac{1}{2} \right )=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}=\frac{\sqrt{3}-1}{2\sqrt{2}}[/tex]

Therefore,

[tex]\cos \left ( 225^{\circ} \right )\cos \left ( 75^{\circ} \right )=\left ( \frac{-1}{\sqrt{2}} \right )\frac{\sqrt{3}-1}{2\sqrt{2}}=\frac{1-\sqrt{3}}{4}[/tex]

ACCESS MORE