Respuesta :

irspow
An extension of the Pythagorean Theorem is the so-called "distance formula":

d^2=(y2-y1)^2+(x2-x1)^2

d^2=(3-1)^2+(4--2)^2

d^2=2^2+6^2

d=√(2^2+6^2)

Answer:

Option A is correct.

AB = [tex]\sqrt{2^2+6^2}[/tex]

Step-by-step explanation:

From the figure, we have the coordinates:

A= (4, 3) and B = (-2, 1)

Using distance formula(D) for two points  [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is given by;

[tex]D= \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]

Using the points of A =  (4, 3) and B = (-2, 1)

By distance formula:

Length of AB = [tex]\sqrt{(4-(-2))^2+(3-1)^2}[/tex]

                     = [tex]\sqrt{(4+2)^2+2^2} =\sqrt{6^2+2^2}[/tex]

Therefore, the length of line segment AB = [tex]\sqrt{2^2+6^2}[/tex]