Respuesta :

The answer is b.) 2x^3+x^2-4x+3+14/x-2

Answer: Quotient will be

[tex]2x^3+x^2-4x+3[/tex]

Explanation:

Since we have given that

[tex]f(x)=2x^4-3x^3-6x^2+11x+8[/tex]

And

[tex]g(x)=x-2[/tex]

We need to divide the f(x) by g(x),

[tex]f(x)=g(x)\times (2x^3+x^2-4x+3)+16[/tex]

If we equate the above equation with division algorithm which says,

[tex]a=bq+r\\here,\\\\f(x)=g(x)\times q(x)+r(x)[/tex]

so, Quotient will be

[tex]2x^3+x^2-4x+3[/tex]