Respuesta :

mergl
(5x^2-21x-20)/(5x^2-16x-16)
((x-5)(5x+4))/((x-4)(5x+4))
(x-5)/(x-4)

Answer: Simplified form will be

[tex]\frac{(x-5)}{(x-4)}[/tex]

Explanation:

Since we have given that

[tex]\frac{5x^2-21x-20}{5x^2-16x-16}[/tex]

We need to simplify the expression, we get,

[tex]\frac{5x^2-25x+4x-20}{5x^2-20x+4x-16}\\\\\text{We will split the middle terms}\\\\=\frac{5x(x-5)+4(x-5)}{5x(x-4)+4(x-4)}\\\\=\frac{(5x+4)(x-4)}{(5x+4)(x-4)}\\\\\text{ Cancel the common terms}\\\\=\frac{(x-5)}{(x-4)}[/tex]

Hence, simplified form will be

[tex]\frac{(x-5)}{(x-4)}[/tex]

ACCESS MORE