Respuesta :
We can solve this using the Law of Conservation of Momentum. If both marbles are in our system, the initial momentum should equal the final momentum.
The initial momentum can be solved for as so:
[tex]m_(a)[/tex] * [tex]v_(a)[/tex] + [tex]m_{b} * v_{b}[/tex] = [tex]p_{o}[/tex]
(0.06)(0.7) + (0.03)(0) = 0.042 [kg * m/s]
So if the system has an initial momentum of 0.042, it should have the same final momentum.
[tex]m_{a} * v_{a,f} + m_{b} * v_{b,f} = 0.042[/tex]
(0.06)(-0.2) + (0.03)([tex]v_{b,f}[/tex]) = 0.042
(0.03)([tex]v_{b,f}[/tex]) = 0.54
([tex]v_{b,f}[/tex]) = 18 [m/s]
The initial momentum can be solved for as so:
[tex]m_(a)[/tex] * [tex]v_(a)[/tex] + [tex]m_{b} * v_{b}[/tex] = [tex]p_{o}[/tex]
(0.06)(0.7) + (0.03)(0) = 0.042 [kg * m/s]
So if the system has an initial momentum of 0.042, it should have the same final momentum.
[tex]m_{a} * v_{a,f} + m_{b} * v_{b,f} = 0.042[/tex]
(0.06)(-0.2) + (0.03)([tex]v_{b,f}[/tex]) = 0.042
(0.03)([tex]v_{b,f}[/tex]) = 0.54
([tex]v_{b,f}[/tex]) = 18 [m/s]
Answer:the resulting velocity of marble B after collision is [tex]1.8 \frac{m}{s}[/tex]
Explanation:Consider marble A and marble B as a single system
Now apply law of conservation of linear momentum
[tex]m_au_a+m_bu_b=m_av_a+m_bv_b[/tex]
where [tex]m_a=0.06 kg, u_a=0.7 \frac{m}{s}, v_a=-0.2 \frac{m}{s}[/tex]
[tex]m_b=0.03 kg, u_b=0.0 \frac{m}{s}, v_b=? \frac{m}{s}[/tex]
Therefore [tex]0.06\times 0.7+0.03\times 0=(0.06\times -0.2)+0.03v_b[/tex]
[tex]v_b=1.8 \frac{m}{s}[/tex]
Thus the resulting velocity of marble B after collision is 1.8 m/s