Respuesta :
We draw region ABC. Lines that connect y = 0 and y = x³ are vertical so:
(i) prependicular to the axis x - disc method;
(ii) parallel to the axis y - shell method;
(iii) parallel to the line x = 18 - shell method.
Limits of integration for x are easy x₁ = 0 and x₂ = 9.
Now, we have all information, so we could calculate volume.
(i)
[tex]V=\pi\cdot\int\limits_a^bf^2(x)\, dx\qquad\implies \qquad a=0\qquad b=9\qquad f(x)=x^3[/tex]
[tex]V=\pi\cdot\int\limits_0^9(x^3)^2\, dx=\pi\cdot\int\limits_0^9x^6\, dx=\pi\cdot\left[\dfrac{x^7}{7}\right]_0^9=\pi\cdot\left(\dfrac{9^7}{7}-\dfrac{0^7}{7}\right)=\dfrac{9^7}{7}\pi=\\\\\\=\boxed{\dfrac{4782969}{7}\pi}[/tex]
Answer B. or D.
(ii)
[tex]V=2\pi\cdot\int\limits_a^bx\cdot f(x)\, dx[/tex]
[tex]V=2\pi\cdot\int\limits_0^{9}(x\cdot x^3)\, dx=2\pi\cdot\int\limits_0^{9}x^4\, dx= 2\pi\cdot\left[\dfrac{x^5}{5}\right]_0^9=2\pi\cdot\left(\dfrac{9^5}{5}-\dfrac{0^5}{5}\right)=\\\\\\=2\pi\cdot\dfrac{9^5}{5}=\boxed{\dfrac{118098}{5}\pi}[/tex]
So we know that the correct answer is D.
(iii)
Line x = h
[tex]V=2\pi\cdot\int\limits_a^b(h-x)\cdot f(x)\, dx\qquad\implies\qquad h=18[/tex]
[tex]V=2\pi\cdot\int\limits_0^9\big((18-x)\cdot x^3\big)\, dx=2\pi\cdot\int\limits_0^9(18x^3-x^4)\, dx=\\\\\\=2\pi\cdot\left(\int\limits_0^918x^3\, dx-\int\limits_0^9x^4\, dx\right)=2\pi\cdot\left(18\int\limits_0^9x^3\, dx-\int\limits_0^9x^4\, dx\right)=\\\\\\=2\pi\cdot\left(18\left[\dfrac{x^4}{4}\right]_0^9-\left[\dfrac{x^5}{5}\right]_0^9\right)=2\pi\cdot\Biggl(18\biggl(\dfrac{9^4}{4}-\dfrac{0^4}{4}\biggr)-\biggl(\dfrac{9^5}{5}-\dfrac{0^5}{5}\biggr)\Biggr)=\\\\\\[/tex]
[tex]=2\pi\cdot\left(18\cdot\dfrac{9^4}{4}-\dfrac{9^5}{5}\right)=2\pi\cdot\dfrac{177147}{10}=\boxed{\dfrac{177147\pi}{5}}[/tex]
Answer D. just as before.
(i) prependicular to the axis x - disc method;
(ii) parallel to the axis y - shell method;
(iii) parallel to the line x = 18 - shell method.
Limits of integration for x are easy x₁ = 0 and x₂ = 9.
Now, we have all information, so we could calculate volume.
(i)
[tex]V=\pi\cdot\int\limits_a^bf^2(x)\, dx\qquad\implies \qquad a=0\qquad b=9\qquad f(x)=x^3[/tex]
[tex]V=\pi\cdot\int\limits_0^9(x^3)^2\, dx=\pi\cdot\int\limits_0^9x^6\, dx=\pi\cdot\left[\dfrac{x^7}{7}\right]_0^9=\pi\cdot\left(\dfrac{9^7}{7}-\dfrac{0^7}{7}\right)=\dfrac{9^7}{7}\pi=\\\\\\=\boxed{\dfrac{4782969}{7}\pi}[/tex]
Answer B. or D.
(ii)
[tex]V=2\pi\cdot\int\limits_a^bx\cdot f(x)\, dx[/tex]
[tex]V=2\pi\cdot\int\limits_0^{9}(x\cdot x^3)\, dx=2\pi\cdot\int\limits_0^{9}x^4\, dx= 2\pi\cdot\left[\dfrac{x^5}{5}\right]_0^9=2\pi\cdot\left(\dfrac{9^5}{5}-\dfrac{0^5}{5}\right)=\\\\\\=2\pi\cdot\dfrac{9^5}{5}=\boxed{\dfrac{118098}{5}\pi}[/tex]
So we know that the correct answer is D.
(iii)
Line x = h
[tex]V=2\pi\cdot\int\limits_a^b(h-x)\cdot f(x)\, dx\qquad\implies\qquad h=18[/tex]
[tex]V=2\pi\cdot\int\limits_0^9\big((18-x)\cdot x^3\big)\, dx=2\pi\cdot\int\limits_0^9(18x^3-x^4)\, dx=\\\\\\=2\pi\cdot\left(\int\limits_0^918x^3\, dx-\int\limits_0^9x^4\, dx\right)=2\pi\cdot\left(18\int\limits_0^9x^3\, dx-\int\limits_0^9x^4\, dx\right)=\\\\\\=2\pi\cdot\left(18\left[\dfrac{x^4}{4}\right]_0^9-\left[\dfrac{x^5}{5}\right]_0^9\right)=2\pi\cdot\Biggl(18\biggl(\dfrac{9^4}{4}-\dfrac{0^4}{4}\biggr)-\biggl(\dfrac{9^5}{5}-\dfrac{0^5}{5}\biggr)\Biggr)=\\\\\\[/tex]
[tex]=2\pi\cdot\left(18\cdot\dfrac{9^4}{4}-\dfrac{9^5}{5}\right)=2\pi\cdot\dfrac{177147}{10}=\boxed{\dfrac{177147\pi}{5}}[/tex]
Answer D. just as before.
![Ver imagen WojtekR](https://us-static.z-dn.net/files/d66/8836b3e131245627ee76fb71a37cb52e.png)