99 POINT QUESTION, PLUS BRAINLIEST!!!
(Please answer genuinely, and do not answer just for points, if you do, your answer will be deleted, and those points will be taken back...)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
THIS IS CALCULUS NOT BASIC MATH...

10.) Use the Disk or Shell Method to find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given line.
y = x^3, y = 0, x = 9
(i) the x-axis; (ii) the y-axis; (iii) the line x = 18
A • (i) 9565958/7 pi (ii) 118098/5 pi (iii) 177147/5 pi
B • (i) 4782969/7 pi (ii) 59049/5 pi (iii) 177147/5 pi
C • (i) 9565958/7 pi (ii) 118098/5 pi (iii) 118098/5 pi
D • (i) 4782969/7 pi (ii) 118098/5 pi (iii) 177147/5 pi

** Please show all of you work, if you do not, your answer will be deleted, and the points you earned will be taken away...

Respuesta :

We draw region ABC. Lines that connect y = 0 and y = x³ are vertical so:
(i) prependicular to the axis x - disc method;
(ii) parallel to the axis y - shell method;
(iii) parallel to the line x = 18 - shell method.

Limits of integration for x are easy x₁ = 0 and x₂ = 9.
Now, we have all information, so we could calculate volume.

(i)

[tex]V=\pi\cdot\int\limits_a^bf^2(x)\, dx\qquad\implies \qquad a=0\qquad b=9\qquad f(x)=x^3[/tex]


[tex]V=\pi\cdot\int\limits_0^9(x^3)^2\, dx=\pi\cdot\int\limits_0^9x^6\, dx=\pi\cdot\left[\dfrac{x^7}{7}\right]_0^9=\pi\cdot\left(\dfrac{9^7}{7}-\dfrac{0^7}{7}\right)=\dfrac{9^7}{7}\pi=\\\\\\=\boxed{\dfrac{4782969}{7}\pi}[/tex]

Answer B. or D.

(ii)

[tex]V=2\pi\cdot\int\limits_a^bx\cdot f(x)\, dx[/tex]


[tex]V=2\pi\cdot\int\limits_0^{9}(x\cdot x^3)\, dx=2\pi\cdot\int\limits_0^{9}x^4\, dx= 2\pi\cdot\left[\dfrac{x^5}{5}\right]_0^9=2\pi\cdot\left(\dfrac{9^5}{5}-\dfrac{0^5}{5}\right)=\\\\\\=2\pi\cdot\dfrac{9^5}{5}=\boxed{\dfrac{118098}{5}\pi}[/tex]

So we know that the correct answer is D.

(iii)
Line x = h

[tex]V=2\pi\cdot\int\limits_a^b(h-x)\cdot f(x)\, dx\qquad\implies\qquad h=18[/tex]


[tex]V=2\pi\cdot\int\limits_0^9\big((18-x)\cdot x^3\big)\, dx=2\pi\cdot\int\limits_0^9(18x^3-x^4)\, dx=\\\\\\=2\pi\cdot\left(\int\limits_0^918x^3\, dx-\int\limits_0^9x^4\, dx\right)=2\pi\cdot\left(18\int\limits_0^9x^3\, dx-\int\limits_0^9x^4\, dx\right)=\\\\\\=2\pi\cdot\left(18\left[\dfrac{x^4}{4}\right]_0^9-\left[\dfrac{x^5}{5}\right]_0^9\right)=2\pi\cdot\Biggl(18\biggl(\dfrac{9^4}{4}-\dfrac{0^4}{4}\biggr)-\biggl(\dfrac{9^5}{5}-\dfrac{0^5}{5}\biggr)\Biggr)=\\\\\\[/tex]

[tex]=2\pi\cdot\left(18\cdot\dfrac{9^4}{4}-\dfrac{9^5}{5}\right)=2\pi\cdot\dfrac{177147}{10}=\boxed{\dfrac{177147\pi}{5}}[/tex]

Answer D. just as before.
Ver imagen WojtekR

Otras preguntas

ACCESS MORE