99 POINT QUESTION, PLUS BRAINLIEST!!!
(Please answer genuinely, and do not answer just for points, if you do, your answer will be deleted, and those points will be taken back...)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
THIS IS CALCULUS NOT BASIC MATH...

9.) Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the x-axis.
y=6, y=12-(x^2)/12
A • V = pi*[integral from 6(sqrt(2)) to -6(sqrt(2))] ((12-(x^2)/12)^2)-36 dx = 2016/5 (sqrt(2))pi
B • V = pi*[integral from 6(sqrt(2)) to -6(sqrt(2))] ((12-(x^2)/12)^2)-36 dx = 4032/5 (sqrt(2))pi
C • V = pi*[integral from 12 to -12] ((12-(x^2)/12)^2)-36 dx = 4032/5 (sqrt(2))pi
D • V = pi*[integral from 12 to -12] ((12-(x^2)/12)^2)-36 dx = 2016/5 (sqrt(2))pi

** Please show all of you work, if you do not, your answer will be deleted, and the points you earned will be taken away...

Respuesta :

First of all, we have to draw our region. It is the one over the line y = 6 and below the parabola y = 12 - x²/12.
It is easy to notice that when we draw any straight line, that connect our line and parabola, it will be vertical and
perpendicular to the axis of revolution x. If so, we use disk method. But first, we have to calculate limits of integration x₁ and x₂ (the limit values x of our region, in that points line y = 6 and parabola y = 12 - x²/12 have the same value). We have:

[tex]12 - \dfrac{x^2}{12}=6\quad|\cdot 12\\\\144-x^2=72\\\\x^2=144-72\\\\x^2=72\quad|\sqrt{(\dots)}\\\\x_1=-\sqrt{72}\qquad\vee\qquad x_2=\sqrt{72}\\\\ x_1=-\sqrt{36\cdot2}\qquad\vee\qquad x_2=\sqrt{36\cdot2}\\\\ \boxed{x_1=-6\sqrt{2}\qquad\vee\qquad x_2=6\sqrt{2}}[/tex]

Now we can calculate the volume:

[tex]V=\pi\cdot\int\limits_{-6\sqrt{2}}^{6\sqrt{2}} \left[\left(12-\dfrac{x^2}{12}\right)^2-6^2\right]\,dx=\\\\\\\boxed{V=\pi\cdot\int\limits_{-6\sqrt{2}}^{6\sqrt{2}} \left[\left(12-\dfrac{x^2}{12}\right)^2-36\right]\,dx }[/tex]

Answer A or B (of course if we reverse limits of integration; in this case integral from positive number to negative one will be negative, and we know, that V ≥ 0).

[tex]V=\pi\cdot\int\limits_{-6\sqrt{2}}^{6\sqrt{2}} \left[\left(12-\dfrac{x^2}{12}\right)^2-36\right]\,dx=\\\\\\=\pi\cdot\int\limits_{-6\sqrt{2}}^{6\sqrt{2}} \left[12^2-2\cdot12\cdot\dfrac{x^2}{12}+\left(\dfrac{x^2}{12}\right)^2-36\right]\,dx=\\\\\\= \pi\cdot\int\limits_{-6\sqrt{2}}^{6\sqrt{2}} \left[144-2x^2+\dfrac{x^4}{144}-36\right]\,dx=\\\\\\= \pi\cdot\int\limits_{-6\sqrt{2}}^{6\sqrt{2}} \left[\dfrac{x^4}{144}-2x^2+108\right]\,dx=\\\\\\ [/tex]

[tex]=\pi\cdot\left[\int\limits_{-6\sqrt{2}}^{6\sqrt{2}} \dfrac{x^4}{144}\, dx-\int\limits_{-6\sqrt{2}}^{6\sqrt{2}}2x^2\, dx+\int\limits_{-6\sqrt{2}}^{6\sqrt{2}}108\,dx\right]=\\\\\\= \pi\cdot\left[\dfrac{1}{144}\int\limits_{-6\sqrt{2}}^{6\sqrt{2}} x^4\, dx-2\int\limits_{-6\sqrt{2}}^{6\sqrt{2}}x^2\, dx+108\int\limits_{-6\sqrt{2}}^{6\sqrt{2}}\,dx\right]=\\\\\\[/tex]

[tex]=\pi\cdot\left[\dfrac{1}{144}\cdot\left[\dfrac{x^5}{5}\right]_{-6\sqrt{2}}^{6\sqrt{2}}-2\cdot\left[\dfrac{x^3}{3}\right]_{-6\sqrt{2}}^{6\sqrt{2}}+108\cdot\left[x\right]_{-6\sqrt{2}}^{6\sqrt{2}}\right]=\\\\\\= \pi\cdot\Biggl[\dfrac{1}{144}\left(\dfrac{(6\sqrt{2})^5}{5}-\dfrac{(-6\sqrt{2})^5}{5}\right)-2\left(\dfrac{(6\sqrt{2})^3}{3}-\dfrac{(-6\sqrt{2})^3}{3}\right)+\\\\\\+108\left(6\sqrt{2}-\Big(-6\sqrt{2}\right)\Big)\Biggr]=\\\\\\[/tex]

[tex]=\pi\Biggl[\dfrac{1}{144}\cdot\dfrac{31104\sqrt{2}+31104\sqrt{2}}{5}-2\cdot\dfrac{432\sqrt{2}+432\sqrt{2}}{3}+108\cdot12\sqrt{2}\Biggr]=\\\\\\ =\pi\cdot\Biggl[\dfrac{432\sqrt{2}}{5}-576\sqrt{2}+1296\sqrt{2}\Biggr]=\\\\\\= \pi\cdot\Biggl[\dfrac{432\sqrt{2}}{5}-\dfrac{2880\sqrt{2}}{5}+\dfrac{6480\sqrt{2}}{5}\Biggr]=\boxed{\dfrac{4032\sqrt{2}}{5}\pi}[/tex]

Answer  B.
Ver imagen WojtekR

Hello!

I believe the answer is B) pi*[integral from 6(sqrt(2)) to -6(sqrt(2))] ((12-(x^2)/12)^2)-36 dx = 4032/5 (sqrt(2))pi.

I hope it helps!

ACCESS MORE