Answer:
22.4%
Step-by-step explanation:
We have the events,
A = The driver got in an accident
B = The driver took the safety test
Now, it is required to find the conditional probability P(A|B).
Since, [tex]P(A|B)=\dfrac{P(A\bigcap B)}{P(B)}[/tex]
From the table, we have that,
[tex]P(A\bigcap B)=28\\\\P(B)=125[/tex]
Thus, we get,
[tex]P(A|B)=\dfrac{28}{125}[/tex]
i.e. P(A|B) = 0.224
i.e. P(A|B) = 22.4%
Hence, the probability that the driver got in an accident even though the driver took the safety test is 22.4%