Respuesta :

so hmmm notice the picture below

thus

[tex]\bf cos(\theta)=\cfrac{8}{17}\cfrac{\leftarrow adjacent=a}{\leftarrow hypotenuse=c} \\\\\\ \textit{now, using the pythagorean theorem, let's see what "b" is} \\\\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-a^2}=b\implies \pm\sqrt{17^2-8^2}=b \\\\\\ \pm \sqrt{225}=b\implies \pm 15=b[/tex]

now, which is it? +15 or -15? well, the "y" or sine, is positive on the 1st quadrant, and the angle θ, is on the 1st quadrant, thus is +15

[tex]\bf sin(\theta)=\cfrac{opposite}{hypotenuse} \qquad \qquad % cosine cos(\theta)=\cfrac{adjacent}{hypotenuse} \\ \quad \\ % tangent tan(\theta)=\cfrac{opposite}{adjacent}\\\\ -----------------------------\\\\ sin(\theta)=\cfrac{15}{17}\qquad \qquad tan(\theta)=\cfrac{15}{8}[/tex]
Ver imagen jdoe0001