1. CD is tangent to the circle with center O, at point D.
2. Join D to O.
3. OD = OB = r, where r is the radius of the circle.
4. radius OD is perpendicular to the tangent CD.
5. Thus in the right triangle OCD: [tex] CD^{2} + DO^{2} = CO^{2} [/tex], by the pythagorean theorem.
6. [tex](19+r)^{2}= 35^{2}+ r^{2} [/tex]
[tex]38r=35 ^{2}-19^{2}[/tex]
Note: when applying pythagorean theorem, the difference of squares property
[ [tex]a ^{2} -b^{2} =(a-b)(a+b) [/tex] ] is a useful practical tool in calculations.
38r=(35 -19)(35+19)
38r=16*54
r= [tex]\frac{16*54}{38}= 22.74[/tex]
7. Finally, the diameter BA=2r=2*22.74=45.48
So the answer is 45.5