Respuesta :

Step [tex]1[/tex]

In the right triangle ADB

Find the length of the segment AB

Applying the Pythagorean Theorem

[tex]AB^{2} =AD^{2}+BD^{2}[/tex]

we have

[tex]AD=5\ units\\BD=12\ units[/tex]

substitute the values

[tex]AB^{2}=5^{2}+12^{2}[/tex]

[tex]AB^{2}=169[/tex]

[tex]AB=13\ units[/tex]

Step [tex]2[/tex]

In the right triangle ADB

Find the cosine of the angle BAD

we know that

[tex]cos(BAD)=\frac{adjacent\ side }{hypotenuse}=\frac{AD}{AB}=\frac{5}{13}[/tex]

Step [tex]3[/tex]

In the right triangle ABC

Find the length of the segment AC

we know that

[tex]cos(BAC)=cos (BAD)=\frac{5}{13}[/tex]

[tex]cos(BAC)=\frac{adjacent\ side }{hypotenuse}=\frac{AB}{AC}[/tex]

[tex]\frac{5}{13}=\frac{AB}{AC}[/tex]

[tex]\frac{5}{13}=\frac{13}{AC}[/tex]

solve for AC

[tex]AC=(13*13)/5=33.8\ units[/tex]

Step [tex]4[/tex]

Find the length of the segment DC

we know that

[tex]DC=AC-AD[/tex]

we have

[tex]AC=33.8\ units[/tex]

[tex]AD=5\ units[/tex]

substitute the values

[tex]DC=33.8\ units-5\ units[/tex]

[tex]DC=28.8\ units[/tex]

Step [tex]5[/tex]

Find the length of the segment BC

In the right triangle BDC

Applying the Pythagorean Theorem

[tex]BC^{2} =BD^{2}+DC^{2}[/tex]

we have

[tex]BD=12\ units\\DC=28.8\ units[/tex]

substitute the values

[tex]BC^{2}=12^{2}+28.8^{2}[/tex]

[tex]BC^{2}=973.44[/tex]

[tex]BC=31.2\ units[/tex]

therefore

the answer is

[tex]BC=31.2\ units[/tex]

Answer:

Option C on edge 2020 :)

ACCESS MORE