Respuesta :
[tex]P(A | B) = \frac{P(A \cap B)}{P(B)}[/tex]
[tex]P(A|B) = \frac{5/7}{7/8} [/tex]
[tex]P(A|B) = \frac{5}{7} \div \frac{7}{8}[/tex]
[tex]P(A|B) = \frac{5}{7}\times\frac{8}{7}[/tex]
[tex]P(A|B) = \frac{5*8}{7*7}[/tex]
[tex]P(A|B) = \frac{40}{49}[/tex]
[tex]P(A|B) = \frac{5/7}{7/8} [/tex]
[tex]P(A|B) = \frac{5}{7} \div \frac{7}{8}[/tex]
[tex]P(A|B) = \frac{5}{7}\times\frac{8}{7}[/tex]
[tex]P(A|B) = \frac{5*8}{7*7}[/tex]
[tex]P(A|B) = \frac{40}{49}[/tex]
The value of the conditional probability P(A |B) is 5/8
How to determine the conditional probability?
The given parameters are:
P(A n B)= 5/7 and P(B)=7/8
The value of P(A|B) is calculated using:
P(A |B) = P(A n B)/P(B)
So, we have:
P(A |B) = 5/7 / 7/8
Evaluate
P(A |B) = 5/8
Hence, the value of the conditional probability P(A |B) is 5/8
Read more about probability at:
https://brainly.com/question/25870256
#SPJ2