Respuesta :

[tex]P(A | B) = \frac{P(A \cap B)}{P(B)}[/tex]


[tex]P(A|B) = \frac{5/7}{7/8} [/tex]


[tex]P(A|B) = \frac{5}{7} \div \frac{7}{8}[/tex]


[tex]P(A|B) = \frac{5}{7}\times\frac{8}{7}[/tex]


[tex]P(A|B) = \frac{5*8}{7*7}[/tex]


[tex]P(A|B) = \frac{40}{49}[/tex]

The value of the conditional probability  P(A |B) is 5/8

How to determine the conditional probability?

The given parameters are:

P(A n B)= 5/7 and P(B)=7/8

The value of P(A|B) is calculated using:

P(A |B) = P(A n B)/P(B)

So, we have:

P(A |B) = 5/7 / 7/8

Evaluate

P(A |B) = 5/8

Hence, the value of the conditional probability  P(A |B) is 5/8

Read more about probability at:

https://brainly.com/question/25870256

#SPJ2

ACCESS MORE