Respuesta :
The heat of a reaction can be calculated from the heat of formation of each substance in the reaction. It is calculated as the sum of the heat of formation of each substance.
C2H2+2H2----> C2H6 ∆H = (-94.5kJ)
2(H2O ----> H2 +1/2O2) ∆H = 2(71.2kJ)
C2H6 + 7/2 O2 -----> 2CO2 + 3H2O ∆H = (-283kJ)
-----------------------------------------------------------------------
C2H2 + 5/2O2 = 2CO2 + H2O ∆H = -235.1 kJ
4CO2 + 2H2O = 2C2H2 + 5O2 ∆H = 470.2 kJ
C2H2+2H2----> C2H6 ∆H = (-94.5kJ)
2(H2O ----> H2 +1/2O2) ∆H = 2(71.2kJ)
C2H6 + 7/2 O2 -----> 2CO2 + 3H2O ∆H = (-283kJ)
-----------------------------------------------------------------------
C2H2 + 5/2O2 = 2CO2 + H2O ∆H = -235.1 kJ
4CO2 + 2H2O = 2C2H2 + 5O2 ∆H = 470.2 kJ
Answer : The enthalpy change of the reaction is, -470.2 KJ/mole
Solution :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
The balanced chemical reaction are,
(1) [tex]C_2H_2+H_2\rightarrow C_2H_6[/tex] [tex]\Delta H_1=-94.5KJ/mole[/tex]
(2) [tex]H_2O\rightarrow H_2+\frac{1}{2}O_2[/tex] [tex]\Delta H_2=71.2KJ/mole[/tex]
(3) [tex]C_2H_6+\frac{7}{2}O_2\rightarrow 2CO_2+3H_2O[/tex] [tex]\Delta H_3=-283KJ/mole[/tex]
The balanced main chemical reaction will be,
[tex]4CO_2(g)+2H_2O(g)\rightarrow 2C_2H_2(g)_5O_2(g)[/tex] [tex]\Delta H=?[/tex]
First reverse the reaction 3 then adding the twice of reaction 3, twice of reaction 1 and then subtracting four times of reaction 2 from the addition of two reaction 3 and 1, we get the enthalpy change of the reaction.
The expression for enthalpy change of the reaction is,
[tex]\Delta H_{formation}=[2\times \Delta H_3]+[2\times \Delta H_1]-[4\times \Delta H_2][/tex]
where,
n = number of moles
[tex]\Delta H_{formation}=[2\times (283)]+[2\times (94.5)]-[4\times (71.2)]=470.2KJ/mole[/tex]
Therefore, the enthalpy change of the reaction is, -470.2 KJ/mole