Respuesta :
Answer:
[tex](x+3)^2+(y-4)^2=49[/tex]
Step-by-step explanation:
Given : [tex]x^2+y^2=49[/tex]
To Find: Write an equation for the translation of [tex]x^2+y^2=49[/tex] by 3 units left and 4 units up.
Solution:
[tex]x^2+y^2=49[/tex]
[tex]y^2=49-x^2[/tex]
[tex]y=\sqrt{49-x^2}[/tex]
So, [tex]f(x)=y=\sqrt{49-x^2}[/tex]
We are given that first is shifted towards 3 units left.
If the given function f(x) translated by b units left then
f(x)→f(x+b)
So, [tex]f(x)=\sqrt{49-x^2}[/tex] translated by 3 units left
So, [tex]f(x)=\sqrt{49-x^2}[/tex] → [tex]f(x+3)=\sqrt{49-(x+3)^2}[/tex]
Now it is again translated by 4 units up.
If the given function f(x) translated by b units up then
f(x)→f(x)+b
[tex]f(x+3)=\sqrt{49-(x+3)^2}[/tex]→ [tex]f(x+3) +4 =\sqrt{49-(x+3)^2 }+4[/tex]
So, the function becomes : [tex]f(x)=y=\sqrt{49-(x+3)^2 }+4[/tex]
[tex]y-4=\sqrt{49-(x+3)^2 }[/tex]
[tex](y-4)^2=49-(x+3)^2[/tex]
[tex](x+3)^2+(y-4)^2=49[/tex]
Hence an equation for the translation of [tex]x^2+y^2=49[/tex] by 3 units left and 4 units up is [tex](x+3)^2+(y-4)^2=49[/tex]