Respuesta :
The Maclaurin series for [tex]f(x)=\ln(1+x)[/tex] is
[tex]\ln(1+x)=\displaystyle\sum_{n\ge1}\frac{(-1)^{n+1}x^n}n[/tex]
and converges for [tex]-1<x\le1[/tex]. To approximate [tex]\ln1.4[/tex] to within 0.0001 is the same as finding [tex]n[/tex] such that
[tex]|f(x)-P_n(x)|=|R_n(x)|\le10^{-4}[/tex]
where [tex]P_n[/tex] is the [tex]n[/tex]th order Taylor approximation to [tex]f(x)[/tex] and [tex]R_n[/tex] is the remainder term.
By Taylor's theorem, the remainder term is bounded above by
[tex]|R_n(x)|\le\dfrac{M|x|^{n+1}}{(n+1)!}[/tex]
where [tex]M[/tex] is the maximum value achieved by [tex]f^{(n+1)}(x)[/tex] in some interval centered at [tex]x=0[/tex]. We have
[tex]f(x)=\ln(1+x)\implies f'(x)=\dfrac1{1+x}\implies f''(x)=-\dfrac1{(1+x)^2}\implies\cdots\implies f^{(n+1)}(x)=\dfrac{(-1)^nn!}{(1+x)^{n+1}}[/tex]
[tex]\implies\left|f^{(n+1)}(x)\right|=\left|\dfrac{(-1)^nn!}{(1+x)^{n+1}}\right|=\dfrac{n!}{|1+x|^{n+1}}[/tex]
Let's consider the interval [tex]0\le x\le0.4[/tex]. The [tex]n+1[/tex]th derivative is maximized at [tex]x=0[/tex], and this leaves us with
[tex]|f^{(n+1)}(x)|\le\dfrac{n!}{1^{n+1}}=n![/tex]
From this we have that
[tex]|R_n(x)|=\left|\dfrac{f^{(n+1)}(x)x^{n+1}}{(n+1)!}\right|\le\dfrac{n!|x|^{n+1}}{(n+1)!}=\dfrac1{n+1}|x|^{n+1}[/tex]
So now we look for [tex]n[/tex] such that
[tex]\dfrac1{n+1}0.4^{n+1}\le10^{-4}[/tex]
Using a calculator, we can deduce that this occurs for all integers [tex]n\ge7[/tex], which means we need at least 7 terms of the series to achieve the desired accuracy.
Let's check this result:
[tex]f(0.4)=\ln1.4\approx0.336472[/tex]
[tex]P_6(0.4)=\displaystyle\sum_{n=1}^{n=6}\frac{(-1)^{n+1}0.4^n}n\approx0.336299[/tex]
[tex]P_7(0.4)=\displaystyle\sum_{n=1}^{n=7}\frac{(-1)^{n+1}0.4^n}n\approx0.336533[/tex]
Taking the absolute difference, you'll see that [tex]|\ln1.4-P_7(0.4)|\le10^{-4}[/tex], but this is not the case with [tex]P_6[/tex].
[tex]\ln(1+x)=\displaystyle\sum_{n\ge1}\frac{(-1)^{n+1}x^n}n[/tex]
and converges for [tex]-1<x\le1[/tex]. To approximate [tex]\ln1.4[/tex] to within 0.0001 is the same as finding [tex]n[/tex] such that
[tex]|f(x)-P_n(x)|=|R_n(x)|\le10^{-4}[/tex]
where [tex]P_n[/tex] is the [tex]n[/tex]th order Taylor approximation to [tex]f(x)[/tex] and [tex]R_n[/tex] is the remainder term.
By Taylor's theorem, the remainder term is bounded above by
[tex]|R_n(x)|\le\dfrac{M|x|^{n+1}}{(n+1)!}[/tex]
where [tex]M[/tex] is the maximum value achieved by [tex]f^{(n+1)}(x)[/tex] in some interval centered at [tex]x=0[/tex]. We have
[tex]f(x)=\ln(1+x)\implies f'(x)=\dfrac1{1+x}\implies f''(x)=-\dfrac1{(1+x)^2}\implies\cdots\implies f^{(n+1)}(x)=\dfrac{(-1)^nn!}{(1+x)^{n+1}}[/tex]
[tex]\implies\left|f^{(n+1)}(x)\right|=\left|\dfrac{(-1)^nn!}{(1+x)^{n+1}}\right|=\dfrac{n!}{|1+x|^{n+1}}[/tex]
Let's consider the interval [tex]0\le x\le0.4[/tex]. The [tex]n+1[/tex]th derivative is maximized at [tex]x=0[/tex], and this leaves us with
[tex]|f^{(n+1)}(x)|\le\dfrac{n!}{1^{n+1}}=n![/tex]
From this we have that
[tex]|R_n(x)|=\left|\dfrac{f^{(n+1)}(x)x^{n+1}}{(n+1)!}\right|\le\dfrac{n!|x|^{n+1}}{(n+1)!}=\dfrac1{n+1}|x|^{n+1}[/tex]
So now we look for [tex]n[/tex] such that
[tex]\dfrac1{n+1}0.4^{n+1}\le10^{-4}[/tex]
Using a calculator, we can deduce that this occurs for all integers [tex]n\ge7[/tex], which means we need at least 7 terms of the series to achieve the desired accuracy.
Let's check this result:
[tex]f(0.4)=\ln1.4\approx0.336472[/tex]
[tex]P_6(0.4)=\displaystyle\sum_{n=1}^{n=6}\frac{(-1)^{n+1}0.4^n}n\approx0.336299[/tex]
[tex]P_7(0.4)=\displaystyle\sum_{n=1}^{n=7}\frac{(-1)^{n+1}0.4^n}n\approx0.336533[/tex]
Taking the absolute difference, you'll see that [tex]|\ln1.4-P_7(0.4)|\le10^{-4}[/tex], but this is not the case with [tex]P_6[/tex].
We need 7 terms at least to estimate ln 1.4 to within 0.0001.
What is the Maclaurin series?
A Maclaurin series is a Taylor series centred about zero.
Given function is:
f(x)=ln(1+x)
We know the expansion of ln(1+x) about zero(up to 7 terms) is:
[tex]ln(1+x) =x-\frac{x^{2} }{2} +\frac{x^{3} }{3} -\frac{x^4}{4} +\frac{x^5}{5} -\frac{x^6}{6} +\frac{x^7}{7} -.....[/tex]
Where [tex]-1\leq x\leq 1[/tex]
For ln 1.4 put x=0.4 in the above series
[tex]ln(1+0.4) =0.4-\frac{0.4^{2} }{2} +\frac{0.4^{3} }{3} -\frac{0.4^4}{4} +\frac{0.4^5}{5} -\frac{0.4^6}{6} -\frac{0.4^7}{7} +....[/tex]
[tex]ln(1.4)=0.3365333[/tex]
Therefore, we need 7 terms at least to estimate ln 1.4 to within 0.0001.
To get more about the Taylor series visit:
https://brainly.com/question/24188700
