Respuesta :
Using the formulas for projectile motion, we can find the range of a projectile. Horizontal range of a projectile is (Vo^2(sin2angle))/g. For an initial velocity, Vo=42 ft/s and angle of 50 degrees, the horizontal range of the projectile is 53.95 ft. If the initial velocity is changed to Vo=84 ft/s, the horizontal range is 215.80 ft. This is 161. 85 feet farther from the first projectile.
Answer:
1) 53.95 ft ( approx )
2) 161.85 ft. ( approx )
Step-by-step explanation:
Given,
Initial velocity, [tex]v_0=42\text{ ft per second}[/tex]
Also, the projected angle, [tex]\theta=50^{\circ}[/tex]
1) Thus, the distance travelled horizontally ( Range of the projectile motion ),
[tex]R=\frac{v_0^2sin2\theta}{g}[/tex]
Where, g is the acceleration due to gravity that having the value 32.2 ft per second,
[tex]=\frac{42^2 sin 100^{\circ}}{32.2}[/tex]
[tex]=53.9503377737[/tex]
[tex]\approx 53.95[/tex]
Hence, the projectile covers 53.95 feet ( approx )
2) If [tex]v_0=84\text{ ft per sec}[/tex]
Then the range would be,
[tex]R=\frac{84^2 sin 100^{\circ}}{32.2}[/tex]
[tex]=215.801351095[/tex]
[tex]\approx 215.80[/tex]
Thus, the additional distance = 215.80 ft - 53.95 ft = 161.85 ft.
Hence, It will travel 161.85 ft extraa.