Step 1: Use the equation y = [tex] \frac{k}{s} [/tex] in solving inverse variation problems
y = [tex] \frac{k}{s} [/tex] ⇒ w = [tex] \frac{k}{l} [/tex]
w = width
l = length
k = area
Step 2. Find the value of k by substituting the given information, where:
w = 60 yd
l = 75 yd
60 = [tex] \frac{k}{75} [/tex]
k = 4500 yd²
Step 3. Rewrite the standard equation by substituting the value of
k = 4500 yd²
w = [tex] \frac{4500}{l} [/tex]
Step 4. Substitute l = 72 yd to find the width of the second field
w = [tex] \frac{4500}{72} [/tex]
w = 62.5 yd